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Chapter 1

Summary

This is the final report for AFRL Contract F30602-00-2-0505,Inferencing in Support of Active Templates.
The primary accomplishments of this project are as follows:

HICAP. HICAP is a general purpose planning architecture that we have developed and applied to assist
military commanders with planningNEOs (Noncombatant Evacuation Operations). HICAP inte-
grates a hierarchical task editor, HTE, with SiN (SHOP in NaCoDAE), a planning tool that tightly
integrates conversational case-based planning (through HICAP’s NaCoDAE/HTN subsystem) with
HTN decomposition (using the SHOP planner described below). In this application, HTE maintains
an agenda of tactical planning tasks that, according to military doctrine, must be addressed in a NEO
plan. It also supports several bookkeeping tasks, which are crucial for large-scale planning tasks that
differ greatly among different NEO operations. Military planners select a task to decompose from
HTE and then use SiN to interactively refine it into an operational plan by selecting and applying
cases, which represent task decompositions from previous NEO operations. Thus, HICAP helps mil-
itary commanders by using previous experience to formulate operational plans that are in accordance
with NEO doctrine.

SHOP and SHOP2. SHOP and SHOP2 are HTN planning systems that we designed with two goals
in mind: to investigate some research issues in automated planning, and to provide some simple,
practical planning tools that could be used to support AcT and also be used elsewhere. We have
made them available as open-source software, and they have been downloaded thousands of times.
Their practical utility is shown by the emergence of an active set of users, which include government
laboratories, industrial R&D projects, and academic settings. As an example of their research impact,
SHOP2 received one of the top four awards in the 2002 International Planning Competition.

CAT. The Air Force Research Laboratory’s Causal Analysis Tool (CAT) is a system for creating and
analyzing causal models similar to Bayesian networks. To use CAT as a tool for planning military
operations, users go through an iterative process in which they use CAT to create alternative plans and
then use CAT to analyze these plans. One of the biggest difficulties is that there is an exponentially
large number of possible plans, making it impossible for the user to create and analyze every possible
plan.

To solve this problem, we have developed an approach to quickly compute upper and lower bounds on
the probabilities of success associated with a partial plan, and use these probabilities to recommend
which actions the user should include in the plan in order to get a complete plan. This provides an
exponential reduction in the amount of time needed to find a complete plan. In our experiments,
our approach generated recommendations that resulted in plans that have the highest probability of
success in just a few minutes.

1



Chapter 2

Introduction

The introduction is divided into three parts: one for HICAP, one for SHOP and SHOP2, and one for CAT.

2.1 HICAP

Generative planners traditionally require a complete description of the planning domain. However, in prac-
tical planning applications, developing a complete description is not always feasible.

One example is the task of planning a Noncombatant Evacuation Operation (NEO). These are military
evacuation operations that require performing hundreds of subtasks and whose primary goal is to minimize
loss of life. Formulating a NEO plan is a complex task because it involves considering a wide range of
factors (e.g., military resources, political issues, meteorological predictions) and uncertainties (e.g., hostility
levels and locations). Flawed NEO plans could yield dire consequences. For example, Siegel [62] reported a
mistake during Eastern Exit. Doctrine states that evacuees must be inspected prior to embarkation in military
transports. However, this task was never assigned to any of the ground teams, and one of the evacuees
produced his weapon during a helicopter evacuation flight. Although it was immediately confiscated, this
oversight may have resulted in tragedy and illustrates the difficulties with planning NEOs manually.

In general, there will be an incomplete domain description, in the form of standard requirements and op-
erating procedures. However, these cannot be used to derive detailed plans, which often require knowledge
about previous experiences.

Formulating a NEO can be quite complex. Typically there will be hundreds of tasks to be carried out.
These tasks will depend on a wide range of factors: sources of danger, available resources, geography,
weather predictions, political issues, and so forth. Complete information about the current state will never
be available; the planning must include dynamic information gathering, and plans must be formulated with
an incomplete world state.

For such a problem, the planning must be done by a human expert or under the supervision of a human
expert. It is unrealistic to expect that a planning system could produce good plans by itself, and flawed
evacuation plans could yield dire consequences.

HICAP is a general purpose planning architecture that we have developed and applied to assist military
commanders with planningNEOs(Noncombatant Evacuation Operations). HICAP integrates a hierarchical
task editor with a planning tool that tightly integrates conversational case-based planning with HTN decom-
position. HICAP maintains an agenda of tactical planning tasks that, according to military doctrine, must
be addressed in a NEO plan. It also supports several bookkeeping tasks, which are crucial for large-scale
planning tasks that differ greatly among different NEO operations. Military planners select a task to de-
compose and interactively refine it into an operational plan by selecting and applying cases, which represent
task decompositions from previous NEO operations. Thus, HICAP helps military commanders by using
previous experience to formulate operational plans that are in accordance with NEO doctrine.

2



2.2 SHOP and SHOP2.

SHOP and SHOP2 are HTN planning systems that we designed with two goals in mind: to investigate some
research issues in automated planning, and to provide some simple, practical planning tools that could be
used to support AcT and also be used elsewhere. They have been successful in both respects.

SHOP and SHOP2 are available as open-source software, and have been downloaded thousands of times.
Their practical utility is shown by the emergence of an active set of users, which include government labo-
ratories, industrial R&D projects, and academic settings. As an example of their research impact, SHOP2
received one of the top four awards in the 2002 International Planning Competition [25].

One reason for the success of SHOP and SHOP2 is their use of Hierarchical Task Networks (HTNs).
HTN planning is done by applyingHTN methods, which basically are forms that describe how to decompose
tasks into subtasks. HTN methods can be used to describe the “standard operating procedures” that one
would normally use to perform tasks in some domain; thus they often correspond well to the way that users
think about problems.

Another reason for the success of SHOP and SHOP2 is their use of a search-control strategy calledor-
dered task decomposition, which reduces the complexity of reasoning by eliminating a great deal of uncer-
tainty about the world. Ordered task decomposition makes it easy to incorporate a great deal of expressive
power into the planning system: for example, SHOP and SHOP2 can do complex inferential reasoning,
mixed symbolic/numeric computations, and call user-supplied subroutines.

2.3 CAT

In planning a course of action (i.e., a plan to achieve a desired objective or objectives), quick and accurate
decision making is a very important task and it is very hard. A major source of difficulty is how to deal with
uncertainty. This uncertainty has many sources, but perhaps the biggest one is the uncertain relationship
between causes and effects. For example:

• At a tactical level, sorties are flown against a series of bridges to prevent the enemy ground forces from
crossing the river. The sorties are intended to prevent the crossing. What is the probability that they will?

• At a strategic level, the destruction of the Taliban Army was intended ultimately to reduce world-wide
terrorism. Did it?

Such uncertainties are compounded by the size and complexity of most military plans—for example, a
causal model of Operation Deny Freedom, built by the actual planners, contains over 300 uncertain events
interrelated by cause and effect. Moreover, there are often significant delays between cause and effect, and
effects may persist for only limited amounts of time: a destroyed bridge can be rebuilt or bypassed. This
makes it exceedingly difficult to forecast the possible effects of a military operation.

We have developed a way to help analyze this uncertainty in order to generate effective plans. The basis
for our approach is the Air Force Research Laboratory’s (AFRL’s) Causal Analysis Tool (CAT), which is a
tool for representing and analyzing causal networks similar to Bayesian networks. From this representation,
CAT can compute the probability that any given plan (i.e., any chosen combination of actionable items) will
achieve the desired objectives.

A major technical difficulty is how to overcome combinatorial blowup during the planning process. If
there aren different actionable items, then there are potentially2n different plans, making it infeasible for
the user to ask CAT to analyze each one. Our approach exploits the conditional-independence relationships
within a causal network in order to overcome this combinatorial blowup. In doing so, it quickly computes
upper and lower bounds on the probabilities of success associated with a partial plan, and uses these bounds
to recommend which actions the user should include in the plan in order to get a complete course of action.
This provides an exponential reduction in amount of time needed to find a complete plan. In our exper-

3



imental evaluation, our approach generated recommendations that resulted in plans that have the highest
probability of success in just a few minutes, demonstrating its effectiveness.
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Chapter 3

Methods, Assumptions, and Procedures

This section is divided into three parts: one for HICAP, one for SHOP and SHOP2, and one for CAT.

3.1 HICAP

Generative planners traditionally require a complete description of the planning domain. However, in prac-
tical planning applications, developing a complete description is not always feasible.

One example is the task of planning a Noncombatant Evacuation Operation (NEO). These are military
evacuation operations that require performing hundreds of subtasks and whose primary goal is to minimize
loss of life. Formulating a NEO plan is a complex task because it involves considering a wide range of
factors (e.g., military resources, political issues, meteorological predictions) and uncertainties (e.g., hostility
levels and locations). Flawed NEO plans could yield dire consequences. For example, Siegel [62] reported a
mistake during Eastern Exit. Doctrine states that evacuees must be inspected prior to embarkation in military
transports. However, this task was never assigned to any of the ground teams, and one of the evacuees
produced his weapon during a helicopter evacuation flight. Although it was immediately confiscated, this
oversight may have resulted in tragedy and illustrates the difficulties with planning NEOs manually.

In general, there will be an incomplete domain description, in the form of standard requirements and op-
erating procedures. However, these cannot be used to derive detailed plans, which often require knowledge
about previous experiences.

Formulating a NEO can be quite complex. Typically there will be hundreds of tasks to be carried out.
These tasks will depend on a wide range of factors: sources of danger, available resources, geography,
weather predictions, political issues, and so forth. Complete information about the current state will never
be available; the planning must include dynamic information gathering, and plans must be formulated with
an incomplete world state.

For such a problem, the planning must be done by a human expert or under the supervision of a human
expert. It is unrealistic to expect that a planning system could produce good plans by itself, and flawed
evacuation plans could yield dire consequences.

This section describes a plan formulation tool, HICAP (Hierarchical Interactive Case-Based Architec-
ture for Planning), that was designed to assist human experts in planning emergency evacuations. Since the
plans are strongly hierarchical in nature, HICAP represents plans using Hierarchical Task Networks (HTNs).

As shown in Figure 3.1, HICAP integrates a task decomposition editor, HTE, with a mixed-initiative
planning system, SiN. HTE allows users to edit tasks, and SiN allows users to interactively refine HTN plans.
Their integration in HICAP ensures that operational plans are framed within the standard requirements and
operating procedures or within the changes made by human planners through interactive task editing and
and interactions with HICAP’s case-based and generative planning modules.

5
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Figure 3.1: The HICAP plan-authoring system.

The following sections describe the application domain, HICAP’s knowledge representation, and its
architecture.

3.1.1 Evacuation Operations

NEOs are conducted to assist the USA Department of State (DoS) in evacuating noncombatants, nonessen-
tial military personnel, selected host-nation citizens, and third country nationals whose lives are in danger
from locations in a host foreign nation to an appropriate safe haven. They usually involve a swift insertion
of a force, temporary occupation of an objective (e.g., a USA Embassy), and a planned withdrawal after
mission completion. NEOs are usually planned and operated by a Joint Task Force (JTF) and conducted
under a USA Ambassador’s authority. Force sizes can range into the hundreds with all branches of armed
services involved, while the evacuees can number into the thousands. At least ten NEOs were conducted
within the past decade (e.g., Eastern Exit (1991, Mogadishu, 300 evacuees), Assured Response (1997, Mon-
rovia, 2400)). Unclassified publications exist that describe NEO doctrine (e.g., DoD, 1994), case studies
(e.g., Siegel [62, 63]), and more general analyses [67, 41].1

The decision making process for a NEO is made at three increasingly-specific levels: strategic, tactical,
and operational. The strategic level involves global and political considerations such as whether to perform
the NEO. The tactical level involves considerations such as determining the size and composition of the
force executing the NEO. The operational level is the concrete level, which assigns specific resources to
specific tasks.

JTF Commanders (CJTF) plan NEOs in the context of doctrine [19], which establishes a framework
for designing strategic and tactical plans; operational considerations are only partly addressed. Doctrine
describes general aspects that must be considered when planning a military operation, including the chain of
command and a series of tasks to perform. However, doctrine is limited; it is idealized and cannot account
for characteristics of specific NEOs. Thus, the CJTF must always adapt doctrine to the specific needs of
a NEO, and does so in two ways. First, he must dynamically modify doctrinal guidance by eliminating

1Seehttp://www.aic.nrl.navy.mil/∼aha/neos for more information on NEOs.

6



irrelevant planning tasks and adding others, depending on the operation’s needs, resource availabilities,
and the planners’ past experiences. For example, although NEO doctrine states that a forward command
element (FCE) must be inserted into the evacuation area prior to the primary evacuation elements, temporal
constraints sometimes prevent this insertion (e.g., [62]). Second, he must employ experiences from previous
NEOs, which complement doctrine by suggesting operational refinements that are suitable for the current
environment. For example, he could draw upon his own experience or from others to identify whether
it is appropriate to concentrate the evacuees in the embassy or to plan on multiple evacuation sites. In
summary, military planners use guidance from both doctrine and their operational experiences (i.e., from
past operations and exercises) to plan NEOs.

The following sections describe how HICAPis intended to assist human planners by interactively devel-
oping evacuation plans.

3.1.2 Knowledge Representation

HICAP uses a variant of hierarchical task networks (HTNS) [27, Chapter 11], which are descriptions of
possible ways to accomplish tasks by breaking them down into subtasks to be accomplished. It also uses
cases, portions of plans that were formulated during previous planning episodes [27, Section 24.2]. Both of
these are described below.

HTNs

In HICAP, an HTN is a set of tasks and their ordering relations, denoted asN = ({t1, . . . , tm},≺), where
m ≥ 0 and≺ is a binary relation expressing temporal constraints between tasks. Decomposable tasks are
calledcompound, while non-decomposable tasks are calledprimitive.

A domain description consists of methods and operators for generating plans. A method is an expression
of the formM = (h, P, ST ), whereh (the method’s head) is a compound task,P is a set of preconditions,
andST is the set ofM ’s subtasks.M is applicable to a taskt, relative to a stateS (a set of ground atoms),
iff matches(h, t, S) holds (i.e.,h andt have the same predicate and arity, and a consistent set of bindings
B exists that maps variables to values such that all terms inh match their corresponding ground terms int)
and the preconditionsP are satisfied inS.

An operator is an expression of the formO = (h, aL, dL), where h (the operator’s head) is a primitive
task, andaL anddL are the add- and delete-lists. These specify that when the operator is executed, every
element in the add-list is to be added toS and every element in the delete-list is to be removed fromS. An
operatorO is applicable to a taskt, relative to a stateS, iff matches(h, t, S).

A planning problem is a triple(T, S, D), whereT is a set of tasks,S is a state, andD is a domain
description. A plan is the collection of primitive tasks obtained by decomposing all compound tasks in a
planning problem(T, S, D).

Cases

In many domains it is impossible to assume that a complete domain description of the world is known. A
partial domain description may exist, in the form of standard requirements and operating procedures—and
these can be encoded into methods and operators.

For those parts of the domain for which no domain description is available, reasoning is done through
cases. In HICAP case is a task decomposition that was created by the user while solving a previous planning
problem. A case looks similar to an instance of a method, but usually it is not an instance of any method in
the domain description.

Syntactically, a case is denoted byC = (h, P, ST, Q), whereh, P , andST are defined as for methods
and Q is a set of(question, answer) pairs.Q defines preferences for matching a case to the current state.

7



Preferences are useful for ranking cases in the context of incomplete world states and/or domain theories
because they focus users on providing relevant additional state information.

3.1.3 Hierarchical Task Editor

Because NEOs can be complex, it is difficult for the CJTF and his staff to keep track of the completion
status for each task to be performed and each element of the JTF. TheHierarchical Task Editor(HTE)
was conceived to facilitate the NEO planning process. Given a domain-specific knowledge base for tactical
planning, HTE can be used to:

1. browse and edit the knowledge base’s components,

2. select tasks for further decomposition, and

3. investigate the status of tasks.

HTE serves HICAP as a bookkeeping tool; it maintains the task agenda and helps planners to formulate
plans for decomposable tasks.

HTE’s knowledge base consists of a HTN, a command hierarchy, and an assignment of tasks to com-
mands. For our application to NEO plan formulation, we encoded an HTN to capture critical planning
knowledge corresponding to NEO doctrine [19]. This required a substantial manual knowledge acquisition
effort; our HTN consists of more than 200 tasks and their ordering relations. Next, we elicited the JTF
command hierarchy that is commonly used in NEO operations. The elements in the JTF are represented in a
tree where each node denotes a military commander and its children denote the commander’s subordinates.
Finally, we elicited relations between tasks and the elements in the JTF responsible for them. This is repre-
sented by anassignmentfunction from the elements of the JTF to the tasks because the mapping of tasks to
command elements is many-to-one.

In addition to providing users with a visual description of the standard requirements and procedures,
HTE can be used to edit the HTN, its ordering relations, the command hierarchy, and the mapping between
tasks and command assignments. Thus, military commanders can use HTE to tailor its knowledge base ac-
cording to the particular circumstances of the current operation. Furthermore, they can modify the command
hierarchy as needed to represent the resources available for the current planning scenario. Finally, they can
reassign tasks and/or command elements.

Figure 3.2 displays the top level tasks that, according to doctrine, must be performed during a NEO and
the elements in the JTF responsible for them. ISB denotes theintermediate stage base, the location where
the JTF is based prior to the evacuation. SH denotes thesafe havenwhere the evacuees will be transported.
Arrows between tasks denote their execution ordering.

3.1.4 SiN

HICAP incorporates a mixed-initiave planner, SiN (SHOP integrated with NaCoDAE). SiN is a synthesis of
JSHOP, a generative planner, with NaCoDAE, a conversational case retriever [14]. SiN is a provably correct
algorithm that does not require a complete domain description nor complete information about initial or
intermediate world-states.

Users can interact with HTE by selecting a taskT to be decomposed. This invokes SiN to start de-
composing the task under supervision of the user. This decomposition can be recursive; subtasks ofN
can themselves be decomposed further. Eventually, non-decomposable tasks corresponding to operational
actions will be reached. Task decompositions are immediately displayed by HTE.

The SiN planning algorithm integrates the task decomposition algorithms of two planning systems: the
JSHOP generative planner and the NaCoDAE case-based planner. A single (current) stateS is maintained in
SiN that is accessible to and updateable by both JSHOP and NaCoDAE. Answers given by the user during
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Figure 3.2: Top-level tasks.

an interaction with NaCoDAE are added toS (i.e., each question has a translation into a ground atom).
Changes to the state that occur by applying JSHOP’s operators are also reflected inS.

JSHOP is a Java implementation of SHOP [58], which is described in Section 3.2.2

NaCoDAE is a mixed-initiative case retriever. Users interact with NaCoDAE inconversations, which
begin when the user selects a taskt. NaCoDAE responds by displaying the top-ranked cases whose pre-
conditions are satisfied and whose heads matcht. Cases are ranked according to their similarity to the
current stateS, which is the state that exists at that time during the conversation. Similarity is computed
for each caseC by comparing the contents ofS with Q, C ’s (q, a) preference pairs. (That is, each pair is
represented as a monadic atom in S, and similarity for a given(q, a) preference pair becomes a membership
test in S). NaCoDAE also displays questions, whose answers are not known inS, ranked according to their
frequency among the top-ranked cases. The user can select and answer (with a) any displayed question q,
which inserts(q, a) into S. This state change subsequently modifies the case and question rankings. A
conversation ends when the user selects a caseC, at which time the taskt is decomposed intoST (i.e.,C ’s
subtasks).

SiN receives as input a set of tasksT , a stateS, and a knowledge baseI ∪B consisting of an incomplete
domain descriptionI and a collection of casesB. The output is a solution planπ consisting of a sequence
of operators inI. Both JSHOP and NaCoDAE assist SiN with refiningT into a plan. As does JSHOP, SiN
maintains the set of tasks inT ′ that have not been decomposed and the partial solution planπ. At any point
of time, either JSHOP or NaCoDAE is in control and is focusing on a compound taskt ∈ T ′ to decompose.
SiN proceeds as follows:

• Rule 1: If JSHOP is in control and can decomposet, it does so and retains control. If JSHOP cannot
decomposet, but NaCoDAE has cases for decomposingt, then JSHOP will cede control to NaCoDAE.

• Rule 2: If NaCoDAE is in control, it has cases for decomposingt whose pre-conditions are satisfied. If
the user applies one of them to decomposet, then NaCoDAE retains control. If NaCoDAE has no cases
to decomposet or if the user decides not to apply any applicable case, then ift is JSHOP-decomposable,
NaCoDAE will cede control to JSHOP.
2JSHOP is available for downloading athttp://www.cs.umd.edu/projects/shop.

9



Controller

System  ΣΣΣΣ

Events

Observations Actions

Description of  ΣΣΣΣ

Planner

Plans

Objectives

Initial state

Figure 3.3: A simple conceptual model for planning.Σ is the system for which the planner is formulating
its plans.

If neither of these rules applies, then SiN backtracks, if possible. If backtracking is impossible (e.g., because
t is a task inT ), this planning process is interrupted and a failure is returned.

By continuing in this way, and assuming that the process is not interrupted with a failure, SiN will
eventually yield a planπ.

3.2 SHOP and SHOP2

The SHOP and SHOP2 planning systems were designed with two goals in mind: to investigate some re-
search issues in automated planning, and to provide some simple, practical planning tools. They have been
successful in both respects.

SHOP and SHOP2 are available as open-source software, and have been downloaded thousands of times.
Their practical utility is shown by the emergence of an active set of users, which include government labo-
ratories, industrial R&D projects, and academic settings. As an example of their research impact, SHOP2
received one of the top four awards in the 2002 International Planning Competition [25].

One reason for the success of SHOP and SHOP2 is their use of Hierarchical Task Networks (HTNs).
HTN planning is done by applyingHTN methods, which basically are forms that describe how to decompose
tasks into subtasks. HTN methods can be used to describe the “standard operating procedures” that one
would normally use to perform tasks in some domain; thus they often correspond well to the way that users
think about problems.

Another reason for the success of SHOP and SHOP2 is their use of a search-control strategy calledor-
dered task decomposition, which reduces the complexity of reasoning by eliminating a great deal of uncer-
tainty about the world. Ordered task decomposition makes it easy to incorporate a great deal of expressive
power into the planning system: for example, SHOP and SHOP2 can do complex inferential reasoning,
mixed symbolic/numeric computations, and call user-supplied subroutines.

10



3.2.1 Background

Automated Planning. In general, the purpose of an automated planning system is to generate a plan or
policy that a plan executor can execute in order to achieve some set of goals or objectives. Most planning
research has focused onofflineplanning (see Figure 3.3), in which the entire plan is formulated before the
plan executor begins executing it. Thus at planning time, no direct information is available to the planner
about a plan’s success or failure—instead, the planner must reason about whether the plan will (or is likely
to) succeed or fail. Automated planning systems can be classified roughly into three types:

• Domain-specific planning systems, where the planning domain is known beforehand and the system is de-
signed specifically to reason about plans in that domain. Several of the most successful planning systems
are of this type (e.g., [66]).

• Domain-independent planning systems, which are designed to work in any domain within some large
class of domains (e.g., the well-knownclassicalplanning domains [27]), provided that the input includes
definitions of the basic actions in the domain. Domain-independent systems have been developed that
work quite well in abstract domains—but getting them to work well in domains of practical importance
has been an elusive goal.

• Domain-configurable planning systems. Here, the planning engine is domain-independent, and the do-
main description includes both the basic actions (like in domain-independent planning) and also some
information about how those actions should or may be combined in order to solve planning problems.

Much more work has been done on automated planning than we can describe here, and we refer the reader
to [27] for details.

HTN Planning. For domain-specific and domain-configurable planning, one of the best-known ap-
proaches isHTN planning, in which the planning system formulates a plan by decomposingtasks(sym-
bolic representations of activities to be performed) into smaller and smaller subtasks untilprimitive tasks
are reached that can be performed directly. The basic idea was developed in the mid-70s [61, 68], and the
formal underpinnings were developed in the mid-90s [22].

HTN-planning research has been much more application-oriented than most other AI-planning research.
Most of the domain-configurable systems (e.g., O-Plan [69], SIPE-2 [75], SHOP [58], and SHOP2 [57])
have been used in application development, and domain-specific HTN planning systems have been built for
several application domains (e.g., [66]).

An HTN planning problem consists of the following: theinitial state (a symbolic representation of the
state of the world at the time that the plan executor will begin executing its plan), theinitial task network(a
set of tasks to be performed, along with some constraints that must be satisfied), and adomain description
that contains the following:

• A set of planning operatorsthat describe various kinds of actions that the plan executor can perform.
Each operator may have a set of preconditions that must be true in the state in which the operator is to be
executed, and a set of effects that will occur when the operator is executed. Each of the possible actions
is an operator instance, produced by assigning values to an operator’s parameters.

• A set of methodsthat describe various possible ways of decomposing tasks into subtasks. These are
the “standard operating procedures” that one would normally use to perform tasks in the domain. Each
method may have a set of constraints that must be satisfied in order to be applicable.

• Optionally, various other information such as definitions of auxiliary functions and definitions of axioms
for inferring conditions that are not mentioned explicitly in states of the world.

Planning is done as follows. For each nonprimitive task, the planner chooses an applicable method and
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methodtravel-by-foot
precond: distance(x, y) ≤ 2
task: travel(a, x, y)
subtasks: walk(a, x, y)

methodtravel-by-taxi
task: travel(a, x, y)
precond: cash(a) ≥ 1.5 + 0.5× distance(x, y)
subtasks: call-taxi(a, x) −→ ride(a, x, y) −→ pay-driver(a, x, y)

operatorwalk
precond: location(a) = x
effects: location(a)← y

operatorcall-taxi(a, x)
effects: location(taxi)← x

operatorride-taxi(a, x)
precond: location(taxi) = x, location(a) = x
effects: location(taxi)← y, location(a)← y

operatorpay-driver(a, x, y)
precond: cash(a) ≥ 1.5 + 0.5× distance(x, y)
effects: cash(a)← cash(a)− 1.5 + 0.5× distance(x, y)

Figure 3.4: Pseudocode representation of an extremely simple travel-planning domain. Left-arrows denote
assignments of values to state-variables; right-arrows are ordering constraints.

instantiates it to decompose the task into subtasks. For each primitive task, the planner chooses an applicable
operator and instantiates it to produce an action. If all of the constraints are satisfied, then the planner has
found a solution plan; otherwise the planning system will need to backtrack and try other methods or other
instantiations.

Example. Figure 3.4 gives a pseudocode representation of an extremely simple planning domain in which
there are two ways to travel from one location to another: by foot and by taxi. These are represented by two
methods:travel-by-foot andtravel-by-taxi. The travel-by-foot method has one constraint: a precondition
saying that the distance from the starting point to the destination must be less than or equal to 2 miles. If
the method is applicable, it decomposes the task into a single subtask: walk to the park. Thetravel-by-taxi
method has one constraint, which is also a precondition: the traveler must have enough cash to pay the taxi
driver. If the method is applicable, it decomposes the task into three subtasks: call a taxi, ride to the park,
and pay the driver. All of the subtasks are primitive, i.e., the traveler is expected to know how to accomplish
them directly.

Now, suppose that in the initial state, I am at home, I have $20, and I want to travel to a park that is 8
miles away. To plan how to travel to the park (see Figure 3.5), first I try to use the travel-by-foot method, but
this method is not applicable because the park is more than 2 miles away. Next, I try to use the travel-by-taxi
method. Its precondition is satisfied, so the method produces a sequence of three subtasks, with a constraint
saying they are to be performed in the following order: (1) call a taxi to my home, (2) ride in it to the park,
and (3) pay the driver $5.50. The subtasks all are primitive, i.e., each of them corresponds to an action. The
first action has no preconditions, so it is applicable and produces a states1 that is identical to the initial state
except thatlocation(taxi) = home. This state satisfies the preconditions of the second action. The second
action produces a state in which the precondition of the third action is satisfied, so I have a solution plan.
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Precond:  distance(home,park) ≤ 2 Precond:  cash(me) ≥ 1.50 + 0.50*distance(home,park)

 s1 = {location(me)=home, location(taxi)=home, cash(me)=20, distance(home,park)=8}

Initial state:

 s0 = {location(me)=home, cash(me)=20, distance(home,park)=8}

Initial task: travel(me,home,park)

Precondition succeeds

call-taxi(me,home) ride(me,home,park) pay-driver(me,home,park)

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

travel-by-foot travel-by-taxi

 s2 = {location(me)=park, location(taxi)=park, cash(me)=20, distance(home,park)=8

 s3 = {location(me)=park, location(taxi)=park, cash(me)=14.50, distance(home,park)=8}

Final  state

 s1  s2  s3 

Precondition fails

 s0 

Decomposition into subtasks
ordering

constraint

ordering

constraint

Figure 3.5: Solving a planning problem in the travel-planning domain.

After execution of this plan, the final state will be as shown in the figure.

3.2.2 How SHOP and SHOP2 Work

HTN planning is basically a trial-and-error search: the planner may have to try many different possibilities
before finding a plan that works. In any trial-and-error search, one of the most important questions is what
kind of search-control strategy to use.

SHOP and SHOP2 use a search-control strategy calledordered task decomposition: they choose to
decompose tasks into subtasks in the same order as the order in which the tasks are supposed to be accom-
plished. As a consequence, SHOP and SHOP2 generate the steps of each plan in the same order that the
plan executor will execute those steps (see Figure 3.6), so they know the current state at each step of the
planning process. This reduces the complexity of reasoning by eliminating a great deal of uncertainty about
the world, thereby making it easy to incorporate substantial expressive power into the planning system, such
as the auxiliary functions and axioms mentioned earlier.

The primary difference between SHOP and SHOP2 is that SHOP requires a strict linear ordering on
subtasks and does not allow them to be interleaved. In contrast, SHOP2 does not impose these requirements.
For example, in Figure 3.6, the subtasks of taskt3 and taskt5 are interleaved; this can occur in SHOP2 but
not in SHOP. As a result, some planning domains that would be rather cumbersome to describe in SHOP
can be described more easily in SHOP2.

In April 2002, the SHOP2 planning system achieved high visibility because of its performance in the
2002 International Planning Competition [25], where it received one of the top four awards.3 SHOP2 was

3There were two awards for “distinguished performance” and two for “distinguished performance of the first order;” SHOP2
received one of the former. For more information about the competition, see〈http://planning.cis.strath.ac.uk/competition〉.
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t3

t4 t6 t7 t8

t5

•  •  •

t2

t1

•  •  •

s0 s1 s2 s3

Figure 3.6: An example of ordered task decomposition. The subscripts show the order in which the tasks are
decomposed. In this example, taskst4, t6, t7, t8 are primitive, i.e., they correspond to planning operators.

one of the three fastest planners in the competition: it was able to solve planning problems many times
faster and many times more complicated than those solved by most of the other systems. In addition,
SHOP2 solved 899 out of 904 problems, more than any of the other systems.

Both SHOP and SHOP2 are open-source software, and may be downloaded at〈http://www.cs.umd.
edu/projects/shop〉. SHOP is available in both Common Lisp and Java. SHOP2 is only available in
Common Lisp, but it includes an interface for interoperating with programs written in other languages, and
we are currently implementing a Java version.

3.3 CAT

In planning a course of action (i.e., a plan to achieve a desired objective or objectives), quick and accurate
decision making is a very important task and it is very hard. A major source of difficulty is how to deal with
uncertainty. This uncertainty has many sources, but perhaps the biggest one is the uncertain relationship
between causes and effects. For example:

• At a tactical level, sorties are flown against a series of bridges to prevent the enemy ground forces from
crossing the river. The sorties are intended to prevent the crossing. What is the probability that they will?

• At a strategic level, the destruction of the Taliban Army was intended ultimately to reduce world-wide
terrorism. Did it?

Such uncertainties are compounded by the size and complexity of most military plans—for example, a
causal model of Operation Deny Freedom, built by the actual planners, contains over 300 uncertain events
interrelated by cause and effect. Moreover, there are often significant delays between cause and effect, and
effects may persist for only limited amounts of time: a destroyed bridge can be rebuilt or bypassed. This
makes it exceedingly difficult to forecast the possible effects of a military operation.

This section describes the approach we have developed to help analyze this uncertainty in order to
generate effective plans. The basis for our approach is the Air Force Research Laboratory’s (AFRL’s) Causal
Analysis Tool (CAT), which is a tool for representing and analyzing causal networks similar to Bayesian
networks. From this representation, CAT can compute the probability that any given plan (i.e., any chosen
combination of actionable items) will achieve the desired objectives.

A major technical difficulty is how to overcome combinatorial blowup during the planning process. If
there aren different actionable items, then there are potentially2n different plans, making it infeasible for
the user to ask CAT to analyze each one. Our approach exploits the conditional-independence relationships

14



within a causal network in order to overcome this combinatorial blowup. In doing so, it quickly computes
upper and lower bounds on the probabilities of success associated with a partial plan, and uses these bounds
to recommend which actions the user should include in the plan in order to get a complete course of action.
This provides an exponential reduction in amount of time needed to find a complete plan. In our exper-
imental evaluation, our approach generated recommendations that resulted in plans that have the highest
probability of success in just a few minutes, demonstrating its effectiveness.

3.3.1 Background: Causal Analysis Tool (CAT)

Causal Analysis Tool (CAT) is a system developed by the Air Force Research Laboratory (AFRL) for being
use in creating, modifying and analyzing causal models. CAT is a development tool that is currently in
prototype stage and it has not been deployed in any sort of active use yet. However, to the best of our
knowledge, several strategic-level organizations within the US Air Force are testing CAT and giving positive
feedback about it.

Probability Analysis in CAT

The basic function of CAT is to propagate local estimates of uncertainty throughout large models. Its most
basic output is the probability, as a function of time, that particular events will be true. Below, we give a
brief summary of CAT; for detailed information on the technology that CAT uses, see [44, 45, 46].

Probability analysis in CAT is based on the use of causal models; CAT provides tools to either construct
a causal model or load a previously constructed causal model from a file. CAT’s causal models are similar to
Bayesian Networks (and CAT compiles them into Bayesian Networks in order to do its analysis). However,
CAT’s causal models incorporate several extensions in order to make Bayesian causal modeling available to
users who do not have specialized probability training, and allow sophisticated incremental improvement of
these models when more time is available.

In CAT, a causal modelis a directed graph (e.g., see Figure 3.7 on the next page) in which each node
represents an event that may or may not occur. There are three different kinds of events:actionable items,
which are actions that we may choose whether or not to perform,goalsthat we may wish to achieve, and
other intermediate events that are neither actionable items nor goals. The edges (which are calledmecha-
nisms) represent causal and inhibitory relationships between events. A mechanisme1 7→ e2 between events
e1 ande2 is causalif the occurrence ofe1 increasese2’s probability of occurrence, and it isinhibitory if
the occurrence ofe1 reducese2’s probability of occurrence. Associated with each mechanism is a number
between 0 and 1 to indicate the probability with whiche1 causes or inhibitse2. These numbers are proba-
bilities of causation or inhibition rather than the conditional probabilities used in Bayesian networks—but
they can be translated into the latter, and CAT does such a translation in order to perform its calculations.

In a causal model, the user can specify a number of probabilities by filling in the probability tables for
each event in the causal model. For example, Figure 3.7 shows a set of user-specifed causal probabilities
for the event ”Destroy IADS” in that model. These probabilities tell us that each of the mechanisms ”No
Communications”, ”No Sensors”, ”No Weapons”, and ”No C2” will cause this event alone with probability
0.76. The user can also specify causal probabilities for the event ”Destroy IADS” given various groups of
its causes by using the ”group” check-boxes.

Furthermore, each event in a causal model is associated with a special type of probability, called the
leak probabilityfor that event. Intuitively, an event’s leak probability specifies the probability that the event
will occur even when none of its causes occurs in the world. In other words, a leak probability specifies the
causes of an event that are not specified explicitly in the given causal model. Leak probabilities allow CAT
users to work with incomplete causal models with unknown events and still be able to reason and compute
the probabilities of the events already in the causal model.
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Figure 3.7: An abstract causal model named “Operation OctMod” which represents the plan that the international coalition used against Milosevic in
the Bosnia-Herzegovina war. The window on the right-hand side of the screen shows a portion of the probability table stored in the highlighted node.
The actionable items are the twelve nodes at the bottom of the network that have no predecessors.
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To calculate the probabilities of occurrence for the events and mechanisms of a causal modelM , CAT
first compilesM into a Bayesian Network, sayB(M), such that the event and mechanisms inM correspond
to the nodes ofB(M). CAT computes two different conditional probability tables (CPTs) for each node
n in B(M); namely, aCausal CPTand aInhibitory CPT. These conditional probability tables model the
causal and inhibitory relationships among the events and mechanisms of a causal model, as described above.
They are both computed using theRecursive Noisy-OR (RNOR) rulereported in [46]. The RNOR rule is a
generalization of the traditionalNoisy-ORrule [59], which is widely used for computing the probability of
an event, given the conditional probabilities that describe the dependencies between that event and each of
its predecessors. The RNOR rule allows for modeling and reasoning about complex dependencies between
events of a given causal model, which cannot be captured by the Noisy-OR rule. For details on the RNOR
rule, see [46].

Having computed the special conditional probability tables described above, CAT performs a variant
of probabilistic logic sampling[32] over the compiled Bayesian NetworkB(M), in which it repeatedly
simulates the occurrence (or nonoccurrence) of the nodes inB(M).4 In each simulation run, CAT decides
whether an event (i.e., a node inB(M)) n occurs with the probability computed by the following formula

(1.0− InhibitoryCPT (n, inhibitors(n)))× [1.0− (1.0− CausalCPT (n, causes(n)))(1.0− Leak(n))],

whereLeak(n) is the leak probability associated with the noden, andCausalCPT andInhibitoryCPT
denote the causal and inhibitory conditional probability tables computed by CAT for the noden during
the compilation phase.causes(n) andinhibitors(n) are the sets of predecessors ofn in B(M) such that
causes(n) denotes the set of nodes inB(M) whose occurrence increases the probability of occurrence for
n, andinhibitors(n) denote the set of nodes whose occurrence decreases the probability of occurrence for
n.

The formula given above specifies the following probabilistic-reasoning behavior: if a noden had no
predecessors inB(M) that inhibit the occurrence ofn, then we would wantn to occur as a result of its
causal dependencies specified inCausalCPT (n, causes(n)), and/or as a result of unmodeled external
factors with probabilityLeak(n). However, ifn has inhibiting predecessors, then the probability of the
occurrence ofn due to its causes and its leak probability value may be reduced with the probability spec-
ified in InhibitoryCPT (n, inhibitors(n)). Thus, in each simulation,n will occur with the probability
computed with the formula above, given the occurrences and non-occurrences of each of its predecessors in
that simulation run.

In each simulation run, CAT starts with the nodes inB(M) that has no predecessors. For such nodes,
the above formula specifies the “a priori” probabilities given as input by the user. The simulation progresses
by iteratively considering each noden in B(M) such that the occurrence or non-occurrence of all of the
predecessors ofn is already probabilistically simulated in this particular run. This way, when CAT considers
to simulate the occurrence or nonoccurrence of a noden in a run, it always knows whether the predecessors
of n occurred or not in that particular simulation run. In other words, CAT always knows whether the nodes
in causes(n) andinhibitors(n) are occured or not in that particular simulation run, when it considers the
noden.

CAT runs its simulation repeatedly, for as long as the user wants. As it does so, it keeps statistics
on how frequently each node occurs. It uses these statistics to compute an estimate of the probability of
occurrence for every event in the original causal networkM . CAT displays these estimates to the user as
shown in the left-hand pane of Fig. 3.7. As CAT runs more and more simulations, the estimates of each such
probability get progressively more accurate, and CAT updates its display accordingly. The user may stop
running simulations whenever he/she feels that the estimates have become sufficiently accurate.

4The reason why CAT uses probabilistic logic sampling is because of the way in which CAT reasons about time and scheduling;
the details are beyond the scope of this paper.
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Planning using CAT

In CAT, planning takes place as an iterative and interactive process in which users repeatedly do the fol-
lowing: (1) they make decisions about some actionable items to include and/or exclude, (2) they use CAT
to obtain an estimate of the probability of achieving the goal,5 and (3) they revise these decisions based on
their experience and intuition.

Users may need to try many combinations of actionable items in order to generate the plan that has
the highest probability of achieving the goal. This plan is not necessarily the one that includes all possible
actionable items: if the causal model contains inhibitory mechanisms, then some actionable items may
reduce the probability of achieving the goal. In order to find the plan that maximizes the probability of
achieving the goal, in the worst case a user may need to create and analyze exponentially many alternative
plans. For example, if there aren actionable items, then there are2n different possible combinations of the
actionable items, i.e.,2n different plans. Since the causal models can be quite large and complex, and since
the planning often needs to be done in a very limited amount of time under stressful conditions, it clearly is
not feasible for the user to generate and examine all of these plans.

As an example, ifn = 22 then there are222 different possible plans. Suppose CAT takes 10 seconds
to analyze each plan (this assumption is rather optimistic: if the network is sufficiently large, CAT might
take minutes or even hours). Then the total time needed to analyze all of the plans is approximately 11,651
hours, or more than 485 days. Clearly, this is not acceptable.

3.3.2 Our Approach

We have developed a way to overcome the exponential blowup described above. Our approach involves
modifying CAT so that it can represent and reason aboutpartial plans in which the user has made yes-or-
no decisions for some of the actionable items and the others remainundecided. This enables the users to
carry out the followingiterative plan-development process: the user begins with a partial plan in which all
actionable items are undecided, and gradually makes decisions about more and more of the items until no
undecided items remain.

By using our technique, we can give the following feedback to the user at each iteration of the planning
process: (1) upper and lower bounds on the probabilities of success that can be attained with the current
partial plan, and (2) a recommendation for what choices to make next in order to achieve a complete plan.
The following subsections describe how we compute the upper and lower bounds, and how we use these
bounds to recommend which actionable items to include or exclude next.

Upper and Lower Bounds

We now discuss how to compute lower and upper boundsPmin(e) andPmax(e) on the probability of each
event in a causal modelM .

It is simple to put lower and upper bounds on the probabilities of the actionable items. Suppose the
set of actionable items isA = {a1, . . . , an}, and suppose the user has already chosen some set of actions
D+ ⊆ A to include in the plan and some subsetD− ⊆ A to exclude from the plan, so that the current partial
plan isD = D+ ∪ {¬ai : ai ∈ D−}. Then for eachai ∈ D+, Pmin(ai) = Pmax(ai) = 1; and for each
ai ∈ D−, Pmin(ai) = Pmax(ai) = 0. For eachai ∈ A \ (D+ ∪D−), the user has not yet decided whether
to includeai in the plan, so the tightest lower and upper bounds we can place onP (ai) arePmin(ai) = 0
andPmax(ai) = 1.

5For simplicity, in this paper we assume that there is just one goalg. Situations in which there are several goalsg1, . . . , gk can
sometimes be modeled by adding a new nodeg whose causes areg1, . . . , gk.
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Given the probabilities{Pmin(ai), Pmax(ai)}ni=1, we want to computePmin(e) andPmax(e) for every
event inM that is not an actionable item. One way would be the brute-force approach: run CAT’s probability
analysis onM repeatedly, once for every combination of probabilities{P (ai) ∈ {0, 1} : ai ∈ A \ D}.
However, this approach incurs the same kind of exponential blowup that we discussed earlier, because it
requires doing the probability analysis2n−m times, wheren = |A| andm = |D|. As we now describe, a
quicker computation can be done by taking advantage of conditional independence among the events inM .

During CAT’s simulations, the occurrence or non-occurrence of an evente in the Bayesian network
B(M) is represented by a boolean random variablex(e) ∈ {0, 1}. During each simulation run, the proba-
bility that CAT assignsx(e) = 1 is P (e). In our modified version of CAT, the simulation procedure instead
usestwo random variablesxmin(e) andxmax(e) for each evente. Our simulation assignsxmin(e) = 1 with
a probability that is a lower bound onP (e), and it assignsxmax(e) = 1 with a probability that is an upper
bound onP (e). This is done as follows.

If e is an actionable item, then there are three cases:

• If the user has chosen to include in the plan, we assignxmin(e) = xmax(e) = 1.

• If the user has chosen not to include in the plan, we assignxmin(e) = xmax(e) = 0.

• Otherwise we assignxmin(e) = 0 andxmax(e) = 1.

If e is not an actionable item, then lete1, e2, . . . , eb be all of the nodes that may affecte, i.e.,e1, e2, . . . , eb

are the predecessors ofe. Suppose the simulation has progressed far enough to assign values toxmin(ei) and
xmax(ei) for i = 1, . . . , b. From conditional independence, it follows thatP (e) depends only one1, . . . , eb.
Thus, the set of possible probabilities fore is

S = {P (e|x(e1), x(e2), . . . , x(eb)) :
x(e1) ∈ {xmin(e1), xmax(e1)},
x(e2) ∈ {xmin(e2), xmax(e2)},
. . . ,

x(eb) ∈ {xmin(eb), xmax(eb)}}.

Then the simulation assignsxmin(e) = 1 with probabilitymin(S), and assignsxmax(e) = 1 with probability
max(S).

Providing Feedback and Recommendations

Like the original version of CAT, the modified version can keep running simulations for as long as the user
wishes. Suppose that the user has made some set of yes-or-no decisionsD. For each nodee, let P k

min(e|D)
andP k

max(e|D) be the average values ofxmin(e) andxmax(e) over a set ofk simulation runs. Our modified
version of CAT displays these averages to the user as shown in the left-hand panes of Figures 4.4, 4.5, and
4.6. As the number of runs increases,P k

min(e|D) andP k
max(e|D) converge to lower and upper bounds on

P (e|D).
Our modified version of CAT uses a hill-climbing approach to provide recommendations for additional

actions to include inD+ and D−. Supposeg is somegoal eventwhose probability the user wants to
maximize. In addition to computingP k

min(g|D) andP k
max(g|D) as described above, our modified version

of CAT also computesP k
min(g|D, ai) andP k

min(g|D,¬ai) for everyai ∈ A \ (D− ∪D+). Let

P ∗ = max
⋃
i

{P k
min(g|D, ai), P k

min(g|D,¬ai)}.

ThenP ∗ is the largest amount by whichPmin(g|D) can increase if the user makes a yes-or-no decision
about one of the undecided actions. Either there is anai such thatP k

min(g|D, ai) = P ∗, in which case
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our modified version of CAT will recommend includingai in the plan, or else there is anai such that
P k

min(g|D,¬ai) = P ∗, in which case our modified version of CAT will recommend excludingai from the
plan.

Computation Time

The total computation time required by this technique is no greater than the time needed forn2b calls to
the original version of CAT, whereb is the maximum number of predecessors of each node andn is the
number of actionable items. This is a substantial improvement over2n, becauseb normally remains small
even in very large networks. For example, in the OctMod example of Fig. 3.7, no node has more than four
predecessors. Furthermore, if most nodes have fewer thanb predecessors (as is true in the OctMod example),
then the total computation time will be substantially less thann2b.

For example, let us suppose that we have causal model in which the maximum number of predecessors
of each node isb = 4, the number of actionable items isn = 25 and three of the actionable items has been
already decided — i.e., we havem = 3. Furthermore, suppose again that CAT needs 10 seconds each time
it analyzes the causal network. Then the total time needed for us to get the complete plan is less than 70
minutes. This is substantially better than the 485 days required by the brute-force approach!
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Chapter 4

Results and Discussion

The first three sections describe the results for HICAP, SHOP and SHOP2, and CAT, respectively. The
fourth section is a survey of related work.

4.1 Results for HICAP

The following sections give theoretical results on the correctness of HICAP’s SiN algorithm, and describe
an empirical analysis that demonstrates the impact of the preferences on plan quality.

4.1.1 Correctness of SiN

In this section we will assume that SiN performs ordered task decomposition. That is, we assume that all
tasks are totally ordered and at each iteration, when refining a set of tasksT ′, SiN will start by decomposing
the first task inT ′.

If I is an incomplete domain description andB is a case base (i.e., a set of cases), then a domain
descriptionD is consistent withI ∪ B iff (1) every method and operator inI is an instance of a method
or operator in D and (2) for every caseC = (h, P, ST, Q) in B, there is a methodM = (h′, P ′, ST ′) in
D such thath, P , andST are instances ofh′, P ′ andST ′ respectively. Although many different domain
theories might be consistent withI ∪B, in general we will not know which of these is the one that produced
I andB. However, SiN is correct in the sense that, if it succeeds in outputting a plan, then that plan could
have been generated by JSHOP using any domain description consistent withI ∪B.

Theorem 1 (Correctness of SiN)Let T be a collection of tasks,S be an initial state,I be an incomplete
domain description, andB be a case base, and let SiN(T, S, I,B) represent the invocation of SiN with those
items as inputs. Suppose that SiN performs ordered task decomposition. Then:

• If SiN(T, S, I,B) returns a planπ, then for every domain description D consistent withI ∪ B, π is a
solution plan for the planning problem(T, S, D).
• If SiN(T, S, I,B) cannot find a plan, then there is a domain description D consistent withI ∪ B such
that no solution plan exists for(T, S, D).

The proof is done by induction on the number of iterations of the SiN algorithm. The proof shows that
each SiN task decomposition in(T, S, I ∪ B) corresponds to a JSHOP task decomposition in(T, S, D).
This is sufficient to prove correctness, because of the correctness of JSHOP’s planning algorithm [58].

This proposition suggests that cases in SiN supply two kinds of knowledge: first, they provide control
knowledge, similar to the knowledge encoded in cases using derivational replay when a complete domain
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description is available [71, 33]. Because cases are instances of methods, applying a case is comparable to
a replay step in which the method selected to decompose a task is the one in the case’s derivational trace.
The main difference is that, while cases in replay systems correspond to a complete derivational trace, cases
in SiN correspond to a single step in the derivational trace. Second, cases in SiN augment the domain
description and, thus, provide domain knowledge as do cases in many case-based planners (e.g., [30]).

Imperfect World Information

SiN uses NaCoDAE to dynamically elicit the world state, which involves obtaining the user’s preferences.
Depending on the user’s answers, cases will get re-ranked. When solving a task, the user can choose any of
the cases, independent of their ranking, provided that all their preconditions are met. The preferences play a
pivotal role in determining plan quality due to the absence of a complete domain description.

Consider the following two simplified cases:

Case 1:
Head: selectTransport(ISB,evacuation-site)
Preconditions: HelosAvailable(ISB)
Questions-Answer pairs: Weather conditions? Fine
Subtasks: Transport(ISB,evacuation-site,HELOS)

Case 2:
Head: selectTransport(ISB,evacuation-site)
Preconditions: groundTransportAvailable(ISB)
Questions-Answer pairs:
Weather conditions? Rainy
Imminent danger to evacuees? No
Subtasks: Transport(ISB,evacuation-site,GroundTransport)

These cases both concern the selection of transportation means between an ISB and the site to be evac-
uated. The first case suggests using helicopters provided that they are available at the ISB. The second one
suggests using ground transportation provided that the corresponding transportation means are available at
the ISB. If the two cases are applicable, because both preconditions are met, the answers given by the user
will determine a preference between them. For example if the weather is rainy and there is no immediate
danger for the evacuees, NaCoDAE would suggest the second case. The rationale behind this is that flying
in rainy conditions is risky. Thus, selecting ground transportation would be a better choice.

4.1.2 Example

During a typical planning episode, the user views the top-level tasks first, revising them or their assignments
if necessary. He/she may choose to decompose any of the tasks and view their decomposition. Figure 4.1
shows an intermediate stage during this process. The user has selected the task “Select assembly areas for
evacuation & ECC (Evacuation Control Center) sites.” Thus, the left-hand pane highlights this task, and the
right-hand pane highlights the name of the group responsible for performing it.

Several alternative methods can be considered for decomposing the “select assembly areas” task. When
the planner selects this task, HICAP starts NaCoDAE, which displays the alternatives along with two ques-
tions to help distinguish which one is the best match (see Figure 4.2(a)).

In Figure 4.2(b), the user has answered one of the questions and this has yielded a perfect match to one
of the cases for the “select assembly areas” task. Suppose that the user selects this case to decompose this
task. Figure 4.3 shows the result of this decomposition; two new subtasks are displayed that correspond to
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Figure 4.1: A snapshot of HTE’s interface, displaying tasks (left) and the JTF’s hierarchical organization
(right). Arrows denote ordering constraints.

Figure 4.2: Snapshots of NaCoDAE/HTN’s interface before and after a question has been answsered. In
each, the top window displays advice on what to do next and, when the user answers a question, lists the
possible answers. The lower windows display the questions and cases, respectively.
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Figure 4.3: HICAP’s interface after decomposing the “select assembly areas” task.

this case’s decomposition network. Interaction can continue in a similar manner until all of the operational
elements of the plan have been elaborated.

4.2 Results for SHOP and SHOP2

SHOP and SHOP2 are available as freeware and have been downloaded thousands of times,1 and have
developed a significant user base, including users from government laboratories, industries, and universities.
Based on information given to us by some of the users on our mailing list, here are descriptions of a few of
the projects in which SHOP and SHOP2 have been used.

4.2.1 Projects in US Government Laboratories

Noncombatant Evacuation Planning (Naval Research Laboratory, Washington, DC)
The planning component of the HICAP system (see Section 3.1) includes both generative and case-

based planning. The generative component is provided by SHOP. SHOP and the case-based component,
NaCoDAE are integrated quite tightly: each is capable of using the other to decompose tasks into subtasks.

Evaluating Terrorist Threats (Naval Research Laboratory, Washington, DC)
The purpose of NRL’s AHEAD project is to help intelligence analysts understand and evaluate hy-

potheses about terrorist threats. Given a hypothesis, the AHEAD system uses analogical retrieval to ob-
tain a model of the hostile activity most closely related to the hypothesis. This model is encoded as
an HTN domain description for SHOP2 in which individual actions are annotated with additional ex-
planatory information about their function. AHEAD invokes SHOP2 using this domain description to

1As of June 24, the log of downloads from our web site shows 1783 downloads, but this does not include the number of times
that users have downloaded directly from our ftp server rather than going through our web site. We imagine the total number of
downloads is above 2000.
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produce a plan that is compatible with the hypothesis. As each operator is added to the plan, SHOP2
queries an external evidence database to determine whether the evidence is consistent with that oper-
ator. When the evidence is consistent with the operator, AHEAD generates an argument in favor of
the hypothesis; when the evidence is inconsistent, AHEAD generates a counterargument. The result-
ing structured argument is presented in a browsable user interface. HTN planning is particularly well-
suited to this process because HTNs organize behavior into meaningful components at multiple levels of
abstraction thus enabling coherent, structured argumentation. For more information about AHEAD, see
〈http://www.nrl.navy.mil/aic/iss/ida/projects/ahead/AHEAD.php〉.

Software Systems Integration (NIST, Gaithersburg, MD)
NIST (National Institute of Standards and Technology) is using SHOP2 in a project whose goal is to

automate tasks of software systems integration. So far, the particular example they have used is based
on General Motors’ ebXML-based “bulk rental car buying” interfaces. These interfaces allow a buyer to
search for cars of a particular make, model and year, and purchase them. But if a buyer wants to get
a summary of various cars at various locations (e.g., in order to minimize costs), the interface makes it
difficult to do this. NIST’s code reads the seller’s ebXML BPSS (business process specification schema)
and produces a SHOP2 planning problem in which SHOP determines the sequence of transactions against
the seller’s interfaces to achieve the buyer’s objective. For further information about the project, see〈http:
//www.mel.nist.gov/proj/mee.htm〉.

4.2.2 Projects in Other Government Laboratories

Fighting Forest Fires (LAAS/CNRS, Toulouse, France)
The European Union’s COMETS project focuses on the development of unmanned aerial vehicle (UAV)

control techniques for detection and monitoring of forest fires. As part of this project, researchers at LAAS,
a government research laboratory in Toulouse, France, are developing a distributed architecture in which
each UAV will contain a generic “decisional node” consisting of a supervisor and a planner.

Within each decisional node, they are using SHOP2 as the symbolic planner: they exploit SHOP2’s
forward-chaining capability to integrate its planning activity with specialized software for estimating the
costs, time, etc., for basic UAV operations. In order to perform temporal reasoning, they are using the
same time-stamping technique we developed for temporal planning with SHOP2 in the 2002 International
Planning Competition [57]. The researchers anticipate that they soon will have simulation results and will
be able to run experiments using LAAS’s blimp,Karma. More information about the project is available at
〈http://www.comets-uavs.org〉.

4.2.3 Industry Projects

Controlling Multiple UAVs (SIFT, Minneapolis, MN)
SIFT, LLC is using a modified version of the SHOP2 planner in a UAV control system in their PVACS

project, with funding from DARPA through an SBIR contract. SIFT’s ”Playbook” control system allows
time-pressured users, who are not UAV operators, to request reconnaissance missions using high-level task-
ing commands, modeled on the way people delegate tasks to human subordinates. The SIFT Playbook
supports interactions through both PDA and desktop/laptop interfaces. The Playbook translates users’ brief,
general commands into very specific control actions suitable for execution. The Playbook’s Executive pro-
vides high-level closed-loop monitoring and implementation of the Playbook’s plans, controlling multiple
UAVs through the Variable Autonomy Control System (VACS) Ground Control Station (GCS), developed
by Geneva Aerospace, Inc. The Playbook currently operates these UAVs in a high-fidelity simulation envi-
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ronment, but the interface it uses to control the simulated UAVs through the VACS GCS is the same as the
one used to direct VACS UAVs in real flight operations.

The modified SHOP2 planner plays a key role in SIFT’s Playbook, translating the user’s high level task
specifications into a sequence of commands that can be executed by UAVs. SIFT’s plan library contains
tasks for multiple reconnaissance missions, for both rotorcraft and fixed-wing UAVs. Robert Goldman
at SIFT has developed an augmented version of SHOP2 that generates temporal plans including durative
actions, and provides more knowledge-engineering and debugging support. For further information, see
〈http://www.sift.info/English/projects/PVACS.ppt〉.

Evaluation of Enemy Threats (Lockheed Martin ATL, Cherry Hill, NJ)
Lockheed Martin Advanced Technology Laboratories, in collaboration with the Army Research Labo-

ratory, is using SHOP in a project that attempts to evaluate possible enemy threats. They are using SHOP
to decompose higher level tasks such as ’attack blue-convoy’ into sequences of operations such as ’move
red-tank1 to location2, . . . , fire red-tank1 at blue-convoy.’ Due to their confidentiality restrictions, they
were unable to tell us any further details.

Location-Based Services (Sony Electronics, San Jose, CA)
Sony Electronics Incorporated has used SHOP in a project aimed at developing mobile GIS devices to

help people plan errands that take them to different geographical locations. Due to Sony’s confidentiality
requirements, they were unable to tell us any further details.

Material Selection for Manufacturing (Infocraft Ltd., Sri Lanka)
Infocraft Ltd. 〈http://www.infocraft.lk〉 is developing a system that uses SHOP2 for material selection

in continuous-process manufacturing: specifically, the production of activated carbon from charcoal using
a discrete set of continuous manufacturing processes. The desired properties of the carbon (specifically its
grade size and adsorption level) will vary from one run to another, as will the characteristics of different
supplies of charcoal. The objective of the project is to use SHOP2 to select which supplies of charcoal will
most reliably produce activated carbon with a desired set of properties. SHOP2’s abilities to do numerical
and axiomatic reasoning are essential for this project: adsorption levels are represented as real numbers, and
grade sizes are represented as normal distributions.

4.2.4 University Projects

Automated Composition of Web Services (University of Maryland)
Web services are Web accessible, loosely coupled chunks of functionality with an interface described in

a machine readable format. Web services are designed to becomposed, that is, combined in workflows of
varying complexity to provide functionality that none of the component services could provide alone.

In the OWL-S (formerly DAML-S) language for semantic markup of web services, services can be
described as complex or atomic processes with preconditions and effects. This makes it possible to translate
the OWL-S process-model constructs directly to SHOP2 methods and operators, and we have developed an
algorithm to do so. This means that SHOP2 can be used to solve service composition problems, by telling
SHOP2 to find a plan for the task that is the translation of a composite process [78, 64].

Project Planning (Lehigh University)
The SHOP/CCBR system is a tool developed at the Lehigh University for investigating the use of HTN

planning techniques to support project management. The SHOP/CCBR system is a straightforward ex-
tension of SHOP that usescasesto decompose tasks. Cases are similar in structure to methods, the main
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difference being that cases include preference information for use in ranking applicable cases. SHOP/CCBR
uses a communication module to interact with Microsoft Project, a commercial tool for project management.
This allows displaying the HTN decompositions generated with SHOP’s hierarchical planning algorithm in
Microsoft Project. The on-going work involves developing algorithms to capture cases automatically from
user interactions with Microsoft Project.

Statistical Goal Recognition in Agent Systems (University of Rochester)
For an agent to perform effectively in a multi-agent environment, an important task isgoal recognition,

i.e., inferring the goals of other agents. Researchers at the University of Rochester are developing a statistical
approach to goal recognition using machine-learning techniques. To do the learning requires a labeled
“plan corpus” of plans and their associated goals. They are using SHOP2 to generate such plan corpora
stochastically. For this purpose, they are using a modified version of SHOP2 that makes random choices at
every point where more than one possible decision is available to SHOP2. For more information about the
project, see〈http://www.cs.rochester.edu/research/cisd/projects/goalrec〉.

Additional University Projects
Worldwide, SHOP and SHOP2 have been used in many more college and university projects than we

can mention, but here are some notes about a few of them.

• Drexel University regularly uses SHOP and SHOP2 in their Introductory AI class in order to teach plan-
ning, and in their Knowledge-Based Agents course to do agent reasoning, service composition, etc.

• At the National University of Colombia in Medellin, Colombia, a system is being developed that uses
SHOP2 to automatically create virtual courses from existing educational material.

• At the Technical University of Cluj-Napoca in Romania, SHOP has been used for an e-commerce aplica-
tion, to build plans for bidding in a modified version of the Trading Agent Competition.

• At Trinity College Dublin, SHOP2 is being used in a web-service composition project somewhat similar
to ours.

• Researchers in the Aerospace Engineering Department at the University of Maryland have just begun a
project in which they are using SHOP2 as the planning component in an architecture that combines task
planning, real-time scheduling, and motion/trajectory planning.

• At Villanova University, SHOP2 has been used in a mock spacecraft-mission scenario, to study how the
density, distribution and overall layout of environment obstacles can be used to compute and predict the
best optimization technique to use within SHOP2.

4.3 Results for CAT

We have implemented our approach in CAT that computes the probabilities and recommendations described
in the previous section, and done some preliminary experiments. For our experiments, we have used unclas-
sified versions of causal models for two scenarios. One is the “Operation SSWOTS,” a portion of which is
shown in Figure 4.4, is a “scrubbed” version of a much larger model developed for the war in Afghanistan.
The other, called the “Operation OctMod,” shown in Figure 3.7. The “Operation OctMod” model is a rep-
resentation of the causal model that was used against Milosevic in the Bosnia-Herzegovina war. For each
case, it was possible to use our modified version of CAT to develop plans in the order of minutes.

We now describe a sample user session we have performed with the OctMod example. In this example,
the maximum and the minimum probabilities of occurrence for the goal event (the “accede to demands”
node in Figure 4.5) are 90% and 0%, respectively. The maximum probability of success is achieved when
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Figure 4.4: A portion of the causal model for “Operation SSWOTS.”
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Figure 4.5: The left-hand pane shows the values computed by our modified version of CAT for the minimum and maximum probabilities of each node
in Operation OctMod. Our system recommends performing the rightmost actionable item in the causal network and indicates this by highlighting the
node.
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Figure 4.6: If the user decides to follow the recommendation highlighted in Figure 4.5, this substantially increases the minimum probability of
achieving the goal.
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all of the actions are included in the plan, and the minimum probability of success is achieved when all are
excluded.

Initially, we did not specify any decisions on which of the actionable items to include in the plan or
exclude from it, so all of the actionable items are marked asundecided. We first asked our modified version
of CAT to analyze the causal model and make a recommendation. CAT then calculated the maximum
and minimum probabilities shown in the left-hand pane in Fig.4.5. Note that these probabilities computed
by CAT are correct estimates of the actual minimum and maximum probabilities of the goal node in this
example since our approach enables CAT to compute these estimates over every possible combination of the
decisions on the undecided actions, virtually in a simultaneous way.

Having computed the estimates of the minimum and maximum probabilities, CAT also calculated that
the best choice for us to make next is to include the action “Destroy Transformer Stations,” so it highlighted
this action in black as shown in Figure 4.5. This action is the one with the greatest estimate of increasing
the probability of the goal node. Then we, following CAT’s recommendation, included the action in the
plan, and asked CAT to analyze the causal model again. As shown in Fig. 4.6, including this action in the
plan increases the minimum probability of the goal node from 0% to 56%. At 90%, the node’s maximum
probability is the same as before except for a 1% difference due to random variation in CAT’s simulation.
The reason for such an increase in the minimum probability of the goal node is that 56% represents an
estimate of the probability of the goal when the recommended action is included in the plan, and the rest of
the actions are excluded. The maximum probability of the goal does not change because it is the probability
of the goal when all of the actions are included in the plan.

At this point, we again requested a recommendation for what to do next. The iterative planning process
continued in this manner until we have made a decision for every actionable item. In the case we followed all
of our system’s recommendations, the result was a plan whose probability of success is as high as possible
(i.e., both minimum and maximum probabilities of the goal is about 90%), in which all of the actionable
items are included. The entire process took just a few minutes.

4.4 Related Work

The best general source of information about work on automated planning is [27], which is the first compre-
hensive textbook on the subject. The following three sections provide a survey of work specifically related
to HICAP, SHOP and SHOP2, and CAT.

4.4.1 Work Related to HICAP

Our descriptions of HICAP and SiN are based on [53, 51]. Our additional publications about HICAP include
[54, 55, 3, 52, 50, 53]. Below is a summary of other work related to HICAP.

Case-based planners. CHEF [31] and DIAL [42] are case-based, but do not have a generative component,
and thus need a large case base to perform well across a wide variety of problems. Prodigy/Analogy [71],
DerSNLP [33], and Paris [11] integrate generative and case-based planning, but require a complete domain
theory and are not mixed-initiative.

At least three other integrated (case-based/generative), mixed-initiative planners exist. MI-CBP [72],
which extends Prodigy/Analogy, limits interaction to providing it with user feedback on completed plans.
Thus, it must input, or learn thru feedback, a sufficiently complete domain description to solve problems. In
contrast, SiN gathers information it requires from the user through NaCoDAE conversations, but does not
learn from user feedback. CAPlan/CbC [56] and Mitchell’s [47] system use interaction for plan adaptation
rather than to acquire state information.
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Among integrated case-based/generative planners, SiN’s interleaved control structure is unique in that it
allows both subsystems to equally control the task decomposition process. In contrast, other approaches ei-
ther use heuristics (Prodigy/Analogy, MI-CBP) or order case-based prior to generative planning (DerSNLP,
[47]), although Paris does this iteratively through multiple abstraction levels. Distinguishing the relative
advantages of these control strategies is an open research issue.

CaseAdvisor [15], like SiN, integrates conversational case retrieval with planning. While CaseAdvisor
applies pre-stored hierarchical plans to gather information to solve diagnosis tasks, SiN instead uses its case
retriever to gather information and applies cases to refine hierarchical plans.

NEO planning. Although human NEO planners use a number of computer tools as aids to plan develop-
ment, we know of no deployed NEO planning tools that do any plan generation of their own. [37] proposed
a conceptual design for predicting the number and type of personnel required for a NEO. [16] described
a decision-theoretic approach for instantiating a general NEO plan with specific parameters for locations,
forces, and destinations, and used it to assess alternative plans. [28] presented a system for predicting
manning estimates for certain NEO tasks. None of these systems formulate NEO plans. However, [18]
proposed a distributed hierarchical planning approach for plan formulation, but this system has not yet been
implemented.

Other military planning. Some researchers have reported using case-based planning approaches for HTN
planning tasks on military domains. For example, Mitchell [47] used an integrated CBP (case-based plan-
ning) approach to select which tasks to be performed for a Tactical Response Planner. NEO planning differs
in that requires thatall tasks must be addressed, and HICAP uses CBP to instead choosehow to perform a
task. MI-CBP [72] uses rationale-directed CBP to suggest plan modifications, but does not perform doctrine-
driven task decomposition. HICAP’s interactions instead focus on retrieval rather than plan adaptation and
learning. IFD4’s [12] plan formulation component, ACPT, automatically generates plans as guided by an
editable objectives hierarchy. In contrast, HICAP’s objectives are fixed, and user interaction focuses on task
formulation.

Crisis response planning. Other researchers have described related systems for crisis response tasks. Fer-
guson and Allen [24] describe an interactive planner for crisis response applications, but the system does
not use cases to guide plan formulation. Likewise, the distributed planning tool in [77] does not use cases
for plan formulation. [26] describes an interactive hierarchical case-based scheduler for crisis response, but
does not perform interactive plan formulation. Avesaniet al. [6] describe a case-based planning approach
for fighting forest fires that supports interactive plan adaptation, but does not use hierarchical guidelines
to formulate plans as is done in HICAP. Finally, Leakeet al. [43] describe a case-based planner applied
to disaster response tasks that focuses on learning case adaptation knowledge, but it is not driven by stan-
dard requirements and operating procedures, and focuses interaction on knowledge acquisition rather than
problem elicitation.

4.4.2 Work Related to SHOP and SHOP2

The basic ideas of HTN planning were first developed more than 25 years ago in work by Sacerdoti [61]
and in Tate’s Nonlin planner [68].

HTN planning has been more widely used in planning applications than any other automated-planning
technique [74]. Examples include production-line scheduling [75], crisis management and logistics [17,
69, 13], planning and scheduling for spacecraft [1, 23], equipment configuration [2], manufacturing process
planning [65], evacuation planning [53], the game of bridge [66], and robotics [49, 48].
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In a complex application, an HTN planner may generate plans that contain thousands ofnodes. Plans
this large are very difficult for humans to understand without a natural pictorial representation. Several HTN
planners (e.g., SIPE-2 and O-Plan) provide GUIs to aid in generating plans, viewing them, and following and
controlling the planning processes [74]. Particularly useful for visualizing the plan derivation and structure
is the ability to view its decomposition tree at various levels of abstraction.

The first steps toward a theoretical model of HTN planning were taken by Yang [79] and Kambhampati
[36]. A complete model was developed by Erol [20]. This model provided the basis for the complexity
analysis in [22] and the first provably correct HTN planning procedure, UMCP [21].

An alternative model of HTN planning [9, 8] is to use the branching function of classical planning, and
consider the methods to be a pruning function. This model is appealing in that it provides a clear relation
to classical planning. However, the limitation of this model is that it is only capable of expressing classical
planning problems.

The best known domain-independent HTN planning systems are:

• Nonlin [68],2 one of the first HTN planning systems;

• SIPE-2 [73],3 which has been used in many application domains;

• O-Plan [17, 69],4 which has also been used in many application domains;

• UMCP [21],5 an implementation of the first provably sound and complete HTN planning algorithm;

• SHOP2 [57],6 which is described in Section 3.2.

High-level effects were first described by Tate [68], and the conditions necessary to achieve soundness
with them were explored by Bacchus and Yang [7] and Younget al. [80]. The semantics of high-level effects
are defined in two different ways in the literature: either as additional effects in addition to the ones asserted
by the planning operators (e.g., [7]), or as contraints that must bed satisfied in order for a task to be achieved
or a method to succeed (e.g., [20]). These two approaches result in very different planning algorithms.

Declarations of external preconditions have been used in the Nonlin [68] and SIPE-2 [73] planning
systems. Algorithms for finding external preconditions automatically have been developed for use in the
UMCP system [70].

O-PLAN, SIPE-2, and SHOP2 can each do certain kinds of temporal planning. For details, see the web
sites for O-PLAN and SIPE-2 and see [57] for SHOP2.

4.4.3 Work Related to CAT

In this section, we describe some of the knowledge systems that are designed to support military opera-
tions, and compare their action-planning techniques with our approach using CAT. We also describe two
knowledge-based systems, namely CYPRESS [76] and HICAP (see Section 3.1). that were developed for
generating courses of actions under certain conditions of uncertainty.

The CADET system [29] is a knowledge-based tool planning tool that can automatically generate
courses of actions. The system is capable of modeling hetergeneous assets and tasks, coordinating team
efforts, and generating team action plans in adverserial environments. In that respect, An important differ-
ence between our approach with CAT and the CADET system is that, to the best of our knowledge, CADET
is not capable of performing probabilistic analyses of cause and effect relationships between the events
that may or may not occur during a military operation, and therefore, it is not capable of reasoning about

2A copy of Nonlin can be downloaded athttp://www.aiai.ed.ac.uk/project/nonlin.
3A copy of SIPE-2 can be downloaded athttp://www.ai.sri.com/∼sipe if the user has a license.
4A copy of O-Plan can be downloaded athttp://www.aiai.ed.ac.uk/∼oplan.
5A copy of UMCP can be downloaded athttp://www.cs.umd.edu/projects/plus/umcp.
6A copy of SHOP2 can be downloaded athttp://www.cs.umd.edu/projects/shop.
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optimality in generation of the courses of actions.
[60] describes a knowledged-based system for forming coalitions in order to achieve the given objec-

tives. This system, called CPlanT, is an agent-based system in which the agents form alliances according to
the information they have about the world and the information they have about the other agents in the world.
In this model, the agents prefer to form coalitions within the particular alliances they are involved with,
since allied agents know about each other, and therefore, substantial communication overhead is avoided
when the coalition is formed within the allience. Once a coalition is formed, team-action planning is done
by determining how each team member will contribute to achieving the goals. This task is accomplished by
a coordinator agent, which decomposes the goal into subgoals, creates a course of action for each participant
agent, and distributes these subgoals to the agents in a contract proposal.

The Coalition Agents Experiment (the CoAX Project) [4] also aims to design an agent-based system for
coalition operations. This project aims to provide a rapid integration of agent systems in order to improve
interoperability and support human situation awareness without going through a detailed planning process
involving the participating agents. Using this system, the human users can develop action plans in various
levels of abstraction, and execute those plans in the world. The system also includes agents that represent
the other entities in the world other than the coalition members. The behavior of these agents may have
an influence on the action plan generated for the coalition members, so the system allows for revising the
generated plans, and deconfliction and adjustment of the revised plans via the human users.

A difficulty in our approach might be a practical one: the causal models developed for real military
operations could be so huge as to incur too much computational overheadin CAT’s probabilistic analysis
algorithms. Although this was not the case in our preliminary experiments, the causal models in those
examples were rather small. It will be really interesting to test our system with real scenarios and real users,
and we intend to do so in the near future.

We are also aware of two knowledge-based systems in which users can perform course-of-action plan-
ning in a mixed-initiative way and under certain conditions of uncertainty. CYPRESS [76] is a domain-
independent framework for planning in dynamic and uncertain environments. The system is composed of
several components responsible for generative planning, reasoning about uncertainty, and plan execution. It
is capable of performing both probabilistic and possibilistic (fuzzy-logic based) uncertainty analyses. CY-
PRESS is similar to our approach in that it uses simulation techniques to compute lower and upper bounds
on probabilities. The case representation in HICAP (see Section 3.1 provides a way to reason about certain
kinds of uncertainties, but not to reason about probabilities in the way that CAT does.
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Chapter 5

Conclusions

The first three sections describe our conclusions regarding HICAP, SHOP and SHOP2, and CAT. The fourth
section describes ongoing and future work.

5.1 Conclusions Regarding HICAP

HICAP is an interactive planning tool that assists users in formulating an operational plan. As of the publi-
cation date of this report, HICAP had not been deployed, but was still under development at the US Naval
Research Laboratory.

HICAP is interactive; it supports task editing and triggers conversations for tasks that can be decomposed
in more than one way. The planning process consists of HTN task decomposition, some of which is done
by the user using the HTE editor, and some of which is done by HICAP using the SiN planning algorithm.
The HTE plan editor allows the user to visually check that all tasks are assigned the necessary resources.

HICAP’s SiN procedure is a provably correct procedure for combined case-based and generative plan-
ning with incomplete domain descriptions. It tightly integrates NaCoDAE/HTN’s case-based task decom-
position and JSHOP’s generative planning ability. Experimental results with SiN show that a user can
dynamically guide SiN by giving preferences to it as part of the user’s normal interaction with SiN during
the planning process.

SiN’s ability to combine both experiential and generative knowledge sources can be beneficial in real-
world domains where some processes are well known and others are obscure but recorded memories exists
on how they were performed. Evacuation planning is an example of this type of domain.

5.2 Conclusions Regarding SHOP and SHOP2

We have been pleasantly surprised at the extent to which people have begun using SHOP and SHOP2 in
their research and development projects. We believe that this has come about for several reasons:

• SHOP and SHOP2 are based on HTN decomposition. The decomposition of tasks into subtasks seems to
correspond well to the way in which users think about how to generate plans.

• Unlike most other automated-planning systems, SHOP and SHOP2 plan for tasks in the same order that
the tasks will be executed. This removes a great deal of uncertainty at planning time, which makes it
easier to write write complex domain descriptions.

• SHOP and SHOP2 are available as open-source software. This has made it easy for users to find and fix
bugs, and to adapt the software for their own purposes.
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5.3 Conclusions Regarding CAT

We have described a new technique for interactive course-of-action planning under conditions of uncertainty.
Our approach is based on the use of CAT (Causal Analysis Tool). CAT was developed by the Air Force
Research Laboratory and is in use by a number of military organizations for creating and analyzing causal
models.

To do planning in CAT, a user begins with a causal model of the domain in which some of the nodes
represent actionable items, and makes decisions about which actions to include in the plan and which not.
One of the biggest problems is the exponentially large number of combinations of actionable items: there
are far too many of them for users to analyze each one.

To provide a solution to this problem, we have developed a way to quickly compute estimates for the
minimum and maximum probabilities of success associated with a partial plan, and use these probabilities to
make recommendations about which actions should be included and excluded in order to produce a complete
plan with an exponential reduction in the amount of time required. We have implemented this approach in
CAT. Our preliminary experiments with this version of CAT showed that our approach looks promising:
CAT generated recommendations that produced complete plans with the highest possible probability of
success.

We are currently performing an extensive theoretical and experimental analysis of our technique to de-
termine its strengths and its weaknesses. Furthermore, we also intend to extend the technique for reasoning
about time. In that respect, we already started extending our implementation in CAT to evaluate our prelim-
inary ideas on probabilistic planning with time. Our ultimate objective is to develop a comprehensive theory
of planning with probabilities and time.

5.4 Ongoing and Future Work

The success of the projects described in this report has given us many ideas for improvements and extensions.
We now describe some of them.

5.4.1 Automated Learning of Planning Domains

A great challenge in using any planning system to solve real-world problems is the difficulty of acquiring
the domain knowledge that the system will need. We have developed ways to address part of this problem
by having the planning systemlearn the HTN methods incrementally under supervision of an expert.

We have developed a general formal framework for learning HTN methods, and a supervised learning al-
gorithm, namedCaMeL, based on this formalism [35]. We have developed theoretical results about CaMeL’s
soundness, completeness, and convergence properties, and have done experimental studies of its speed of
convergence under different conditions. The experimental results suggest that CaMeL may potentially to be
useful in real-world applications.

5.4.2 Compiling Planning Domains

A domain-configurable planner may be viewed as an interpreter of its domain-description language: given
a domain descriptionD and a planning problemP , the planner invokes the methods and operators ofD
interpretively onP . An alternative approach is to write acompilerfor the domain description language: the
input to the compiler is a domain descriptionD, and the output is a domain-specific planning program for
D, that can be run directly on any planning problemP in D.

The advantages of such aplanner compilationapproach are analogous to the advantages that compi-
lationhas over interpretation in conventional programming languages. By compiling domain descriptions
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directly into low-level executable code, we can do implementation-level optimizations that are not other-
wise possible and have not been explored in previous research on AI planning. These optimizations can
be coupled with other speed-up techniques (e.g., domain analysis and other automated domain information
synthesis techniques) in order to obtain additional speedups.

We are developing JSHOP2, a Java implementation of SHOP2 that uses this domain-compilation tech-
nique. Our preliminary experimental results suggests that the compilation technique substantially increases
the planner’s efficiency. A technical report on this topic is available [34], and we intend to make JSHOP2
itself available in a few months.

5.4.3 Planning Under Uncertainty

In planning research, the “classical” model of actions is that they have deterministic outcomes. However, in
many situations where one might want to do planning, it may be useful to assume that some actions have
more than one possible outcome. This action model can be useful in situations where the outcome of an
action might vary due to random changes in the environment or to the actions of other agents.

We are developing a general technique for taking forward-chaining planners for deterministic domains
and adapting them to work in nondeterministic planning domains, i.e., planning domains in which each
action may have more than one possible outcome. We have shown both theoretically and experimentally that
our approach can produce exponential speedups over previous algorithms for planning in nondeterministic
environments [38].

We are currently extending our approach to work for situations in which actions have probabilistic
outcomes (e.g., MDP models of actions). We believe that we will be able to obtain similar speedups in these
kinds of planning domains.

5.4.4 Planning with Distributed Information Sources

Planning researchers typically assume that the planning system isisolated: it begins with a complete de-
scription of the planning problem, and has no need of interacting with the external world during the planning
process. In many practical situations, such an assumption is clearly unrealistic: the planner may need to ob-
tain information from external sources during planning.

We have developed a formalism forwrappersthat may be placed around conventional (isolated) planners
to replace some of the planner’s memory accesses with queries to external information sources. When
appropriate, the wrapper can automatically backtrack the planner to a previous point in its operation. We
have done both mathematical and experimental analysis of several different query-management strategies
for these wrappers, i.e., strategies for when to issue queries, and when/how to backtrack the planner. Our
results [5] show conditions under which different query management strategies are preferable, and suggest
that domain-configurable planners such as SHOP2 are likely to be better suited than other planners for
planning with volatile information.

Even better performance can be obtained if a planner can makenon-blockingqueries to external infor-
mation sources, i.e., if the planner can continue exploring other parts of its search space while waiting for
the response to a query. We have developed a modified version of SHOP2 that works in this way. We have
shown experimentally that this dramatically improves (i) the time needed to find a solution and (ii) in cases
where the information source is not guaranteed to respond, the chance of finding a solution at all [39, 40].
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List of Acronyms 
 
AHEAD: Analogical Hypothesis Elaborator for Activity Detection 

http://www.nrl.navy.mil/aic/iss/ida/projects/ahead/AHEAD.php 
 
CADET: Course of Action Development and Evaluation Tool 

http://cadet.bbn.com/ 
 
CaMeL: Candidate Elimination Method Learner 

http://www.cs.umd.edu/~nau/papers/camel-aips2002.pdf 
 
CYPRESS: the name of an integrated planning system; see 

http://www.ai.sri.com/~cypress/tucson/tucson.html 
 
HTE: Hierarchical Task Editor 

http://www.aic.nrl.navy.mil/hicap/ 
 
HICAP: Hierarchical Interactive Case-based Architecture for Planning 

http://www.aic.nrl.navy.mil/hicap/ 
 
IADS: Integrated Air Defense Systems 
 
MDP: Markov Decision Process 
 
NaCoDAE: Navy Conversational Decision Aids Environment 

http://home.earthlink.net/~dwaha/software/nacodae/ 
 
SIFT, LLC: Smart Information Flow Technologies, LLC 

http://www.sift.info/ 
 
SHOP: Simple Hierarchical Ordered Planner 

http://www.cs.umd.edu/projects/shop 
 
SHOP2: Simple Hierarchical Ordered Planner 2 

http://www.cs.umd.edu/projects/shop 
 
SiN: SHOP in NaCoDAE 

http://www.aic.nrl.navy.mil/hicap/pubs-pa.html 
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